Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0270931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797400

RESUMO

The ratio of Na+ and K+ is an important determinant of the magnitude of Na+ toxicity and osmotic stress in plant cells. Traditional analytical approaches involve destructive tissue sampling and chemical analysis, where real-time observation of spatio-temporal experiments across genetic or breeding populations is unrealistic. Such an approach can also be very inaccurate and prone to erroneous biological interpretation. Analysis by Hyperspectral Imaging (HSI) is an emerging non-destructive alternative for tracking plant nutrient status in a time-course with higher accuracy and reduced cost for chemical analysis. In this study, the feasibility and predictive power of HSI-based approach for spatio-temporal tracking of Na+ and K+ levels in tissue samples was explored using a panel recombinant inbred line (RIL) of rice (Oryza sativa L.; salt-sensitive IR29 x salt-tolerant Pokkali) with differential activities of the Na+ exclusion mechanism conferred by the SalTol QTL. In this panel of RILs the spectrum of salinity tolerance was represented by FL499 (super-sensitive), FL454 (sensitive), FL478 (tolerant), and FL510 (super-tolerant). Whole-plant image processing pipeline was optimized to generate HSI spectra during salinity stress at EC = 9 dS m-1. Spectral data was used to create models for Na+ and K+ prediction by partial least squares regression (PLSR). Three datasets, i.e., mean image pixel spectra, smoothened version of mean image pixel spectra, and wavelength bands, with wide differences in intensity between control and salinity facilitated the prediction models with high R2. The smoothened and filtered datasets showed significant improvements over the mean image pixel dataset. However, model prediction was not fully consistent with the empirical data. While the outcome of modeling-based prediction showed a great potential for improving the throughput capacity for salinity stress phenotyping, additional technical refinements including tissue-specific measurements is necessary to maximize the accuracy of prediction models.


Assuntos
Oryza , Imageamento Hiperespectral , Íons , Oryza/genética , Melhoramento Vegetal , Salinidade , Estresse Salino , Tolerância ao Sal/genética , Sódio
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740974

RESUMO

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world's longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.


Assuntos
Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Biomassa , Produção Agrícola/estatística & dados numéricos , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...